Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis.

نویسندگان

  • J P Gaut
  • G C Yeh
  • H D Tran
  • J Byun
  • J P Henderson
  • G M Richter
  • M L Brennan
  • A J Lusis
  • A Belaaouaj
  • R S Hotchkiss
  • J W Heinecke
چکیده

The myeloperoxidase system of neutrophils uses hydrogen peroxide and chloride to generate hypochlorous acid, a potent bactericidal oxidant in vitro. In a mouse model of polymicrobial sepsis, we observed that mice deficient in myeloperoxidase were more likely than wild-type mice to die from infection. Mass spectrometric analysis of peritoneal inflammatory fluid from septic wild-type mice detected elevated concentrations of 3-chlorotyrosine, a characteristic end product of the myeloperoxidase system. Levels of 3-chlorotyrosine did not rise in the septic myeloperoxidase-deficient mice. Thus, myeloperoxidase seems to protect against sepsis in vivo by producing halogenating species. Surprisingly, levels of 3-bromotyrosine also were elevated in peritoneal fluid from septic wild-type mice and were markedly reduced in peritoneal fluid from septic myeloperoxidase-deficient mice. Furthermore, physiologic concentrations of bromide modulated the bactericidal effects of myeloperoxidase in vitro. It seems, therefore, that myeloperoxidase can use bromide as well as chloride to produce oxidants in vivo, even though the extracellular concentration of bromide is at least 1,000-fold lower than that of chloride. Thus, myeloperoxidase plays an important role in host defense against bacterial pathogens, and bromide might be a previously unsuspected component of this system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human neutrophils employ chlorine gas as an oxidant during phagocytosis.

Reactive oxidants generated by phagocytes are of central importance in host defenses, tumor surveillance, and inflammation. One important pathway involves the generation of potent halogenating agents by the myeloperoxidase-hydrogen peroxide-chloride system. The chlorinating intermediate in these reactions is generally believed to be HOCl or its conjugate base, ClO-. However, HOCl is also in equ...

متن کامل

Eosinophils generate brominating oxidants in allergen-induced asthma.

Eosinophils promote tissue injury and contribute to the pathogenesis of allergen-triggered diseases like asthma, but the chemical basis of damage to eosinophil targets is unknown. We now demonstrate that eosinophil activation in vivo results in oxidative damage of proteins through bromination of tyrosine residues, a heretofore unrecognized pathway for covalent modification of biologic targets i...

متن کامل

Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps

Neutrophils release extracellular traps (NETs) in response to a variety of inflammatory stimuli. These structures are composed of a network of chromatin strands associated with a variety of neutrophil-derived proteins including the enzyme myeloperoxidase (MPO). Studies into the mechanisms leading to the formation of NETs indicate a complex process that differs according to the stimulus. With so...

متن کامل

Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli.

Neutrophils and monocytes employ a diverse array of antimicrobial effector systems to support their host defense functions. The mechanisms of action of most of these systems are incompletely understood. The present report indicates that microbicidal activity by a neutrophil-derived antimicrobial system, consisting of myeloperoxidase, enzymatically generated hydrogen peroxide, and chloride ion, ...

متن کامل

Clindamycin, erythromycin, and roxithromycin inhibit the proinflammatory interactions of Pseudomonas aeruginosa pigments with human neutrophils in vitro.

The Pseudomonas aeruginosa-derived phenazine pigments pyocyanin and 1-hydroxyphenazine (1-hp) prime human neutrophils for enhanced, stimulus-activated release of superoxide and myeloperoxidase (MPO), respectively. In the present study, the modulatory potentials of the antimicrobial agents clindamycin, erythromycin, and roxithromycin (10 and 20 micrograms/ml) on the prooxidative interactions of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 21  شماره 

صفحات  -

تاریخ انتشار 2001